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Stress-orientation-strain relationships 
in non-crystalline polymers 
Part 3 Towards a description of glassy deformation 

D.J.  BROWN, A. H. WINDLE 
Department of Metallurgy and Materials Science, University of Cambridge, 
Cambridge, UK 

The two-mode deformation model developed in Part 2 of this series of papers [1] is 
modified by the application of different rate dependences to the two components, in 
order to extend its scope into the vicinity of the glass transition and below. The modified 
treatment predicts the characteristic change in shape of the stress-strain curve near Tg. 
It also accounts for the observed trends in orientation-strain behaviour, predicting that 
orientation as measured by (P2 (cos 4)) develops more rapidly as rate effects become more 
significant, while (P4 (cos qS)) remains very small. The differing recovery behaviour of 
orientation and strain on annealing is successfully accounted for, and the application of 
the model to annealing data for atactic PMMA allows the relative magnitude of the two 
rate constants to be determined for this material. In the adaptation of the model to 
glassy deformation, the number of variables is kept to a minimum, with only a single 
adjustable parameter applied to each mode in order to limit the deformation rate. 

1. The time factor in deformation 
The model discussed in Part 2 of this series of  
papers [ 1 ], to which we shall now refer for brevity 
as the "fast model", ignores the effect of  time on 
deformation processes. This is reasonable for 
deformation above the glass transition, where the 
molecular structure o f  the rubber is in equilibrium 
under the applied stress, but modification is needed 
before deformation at lower temperatures can be 
considered. We then have to consider deformation 
as being governed by some sort of  rate process, 
so that the effect of  time or of  strain rate will 
become important. As a first and simplest approxi- 
mation we treat the "rubber-like" behaviour as a 
limiting case to which our "glassy" behaviour will 
tend at long times or low strain rates. 

1.1. I n c o r p o r a t i o n  o f  t i m e  in t he  m o d e l  
We will approach the question of  the time factor 
~y first considering some simple features of  
~lementary rate theory. Suppose we have a system 
in which some entity can occupy one of two states, 
A and B, which have equal energy in the absence 

of  any external interference (e.g. that due to the 
application of  a stress). Suppose further that the 
transition from state A to state B, or vice versa, 
involves the surmounting of  an energy barrier of  
height AE. 

This situation is illustrated in Fig. la; the rate 
of  transition from A to B will match the rate from 
B to A and will be given by 

Rate ~ nfexp  (-- AE/kT)  (1) 

where n is the number of  entities available and f 
is some vibration frequency. 

An applied stress will have the effect of  biasing 
the energy barrier (Fig. lb). Let the stress be o, 
the "cross-sectional area per entity" perpendicular 
to the direction of  o be a, and the displacement 
(parallel to o) per transition be l. The entity con- 
cerned only has to move a distance I/2 before it 
reaches the " top"  of  the "activation hump":  and 
it will then move immediately "down" into the 
next equilibrium position. We therefore write the 
"bias energy" as oal/2. The "forward" rate (A to 
B) wilt then be given by 
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Figure 1 Rate processes: schematic energy barrier. (a) Symmetrical, (b) stress-biased, t7 = stress, l = displacement, a = 
cross-sectional area per entity. 

Rate A -+ B ~ nf exp -- [ ( A E - -  oal/2)/kT] 

and the "backward" rate (B to A) by 

Rate B ~ A ~ nfexp  -- [(AE + aal/2)/kT] 

so that we have a finite net rate in the A ~  B 

direction, 

Net rate ~ nfexp (-- AE/kT)[exp (oal/2kT) 

-- exp (-- aal/2kT)] 

= n/exp (-- AE/kT) 

x 2 sinh (oal/2kT) (2) 

where the "backward" rate can be neglected at 
high rates o f  strain. 

Such is the fundamental idea behind activated 
flow processes; the approach leads to the theory 
o f  viscosity first set out in detail by Eyring [2]. 
We do not exactly want a straightforward viscous 
flow situation; it leads to infinite flow as time 
tends to infinity or as strain rate tends to zero. 
Instead, we require the long-time limit to be equi- 
valent to the "fast" model of  Part 2 [ 1 ]. Neverthe- 
less, the idea of  an activated process is a useful 
one. 

The simplest approach we can take to begin 
developing a treatment of  glassy deformation is 
to apply a time dependence, in the form of a 
rate constant, to one or both deformation modes. 
There is no reason to suppose that the two modes 
will be equally affected, at a given temperature 
and strain rate, by time dependence. It is not 
suggested that the deformation behaviour of  real 
polymer glasses can be fully described by this 
procedure involving only one or two simple rate 
constants. The procedure is to be seen as a means 
of  introducing time dependence independently 
into each component of  the two-mode model with 
the minimum increase either in mathematical 

complexity or in the number of  adjustable param- 
eters. We may then examine the extent, if any, to 
which the modified model is capable of  describing 
the observed behaviour. 

1.2. Choice of rate c o n s t a n t s  
The two-component approach, as outlined in Part 
1 [3], implies that the extensional mode will be 
the longer-range of  the two deformation modes, in 
that we may think of  a unit moving "bodily" 
through distances comparable to its length. We 
have, in contrast to the proposed orientational 
mode, a shift o f  the centre of  gravity of  the unit. 
It is therefore reasonable to apply a "time factor" 
or strain rate effect first to the extensional mode, 
and to examine the effect of  doing so on the 
behaviour predicted by the model. Subsequently 
we can apply a time factor also to the orientational 
mode. 

1.3. C o m p u t a t i o n  m e t h o d  
The calculation of  strain and orientation for the 
model developed in Part 2 [1] is performed by a 
straightforward set of  computer programs written 
in Fortran. The method is based upon successive 
equal increments of  the true stress parameter q, 
typically with an increment size Aq = 0.1. The 
model is thus one which imposes a constant rate 
o f  change of  true stress. 

This fact may safely be ignored in modelling 
rubber-like behaviour. As soon as we move towards 
Tg, however, it becomes most important to dis- 
tinguish between deformation at constant strain 
rate and deformation at constant "stress rate". It 
is apparent from mechanical testing that the 
behaviour of  a glassy polymer will differ consider- 
ably from one type of  loading to the other. 
Furthermore, in a simple uniaxial tensile test, the 
difference between constancy of  true stress and 
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strain, and constancy of their nominal analogues, 
will be important. 

For modelling purposes it is most useful to 
treat the case of  deformation at some specified 
constant nominal strain rate, since most experi- 
mental data are obtained under this condition. At 
each step of the computation it is then necessary 
to calculate the strain rate, compare the result 
with the specified rate, and if necessary repeat the 
step with an amended value either of the true stress 
parameter increment Aq, or of the time increment 
At. It has proved more convenient in practice to 
amend At and to repeat the calculations for each 
step of the computation, using an iterative tech- 
nique to arrive at the specified strain rate (within a 
tolerance of typically 3%) before proceeding to 
the next computation step. 

2. Extensional component 
Our earlier consideration of the extensional com- 
ponent of strain Xe immediately suggests a process 
we can try activating - the removal of a unit from, 
or the addition of one to, those which intersect 
our "sampling plane". The "forward" process will 
then be that which encourages strain in the direc- 
tion required by the applied stress. This, following 
the approach in Part 2 [1], will be the removal of 
a unit. 

We assume first that the term al in Equation 2 
can be taken as equivalent to the "volume per 
ellipsoidal unit" v. Suppose that the number of 
units available for "removal" is N1 and that the 
number available for "addition" is N2. From 
Equation 2 the net rate of change of N will be 
given by: 

Rate = N l f e x p  (-- AE/kT) exp (q/2) 

-- N2fexp (-- ~/kT)  exp (-- q/2) 
(3) 

making the substitution q =ov/akT again. At 
equilibrium the net rate of change of N must be 
zero, so" 

N2 exp (-- q/2) 
- - exp ( - -q)  (4) 

Na exp (q/2) 

This should be equivalent to the situation given by 
Equation 17 of Part 2, which would give: 

N--N* 
N 0 - - N *  - exp ( - -q)  (5) 

Comparison of these two expressions suggests that 

we make the associations 

N1 = N--N* (6) 

N 2  = N o - - N *  (7) 

so that the net rate of change of N will now be 

Rate = fexp ( - -AE/kT) [ (N- -N*)  exp (q/Z) 

- -  (No -- X*) exp (-- q/Z)] (8) 

Consider now one particular step in the defor- 
mation, comprising an increment of stress (bring- 
ing the value of our "true stress parameter" to q) 
followed by an interval of time At. Let the value 
of (N/No) at the beginning of the interval be 
(Np/No). Then we have: 

No No exp (q/2) 

- (1---~)  exp(--q/2)] F (9) 

abbreviating F = f e x p  (-- AE/kT) At. (N/No)p is 
simply given by the reciprocal of the previous 
value of Xe from the preceding "step", and is 
easily incorporated in the computation. Rearrang- 
ing, we obtain: 

No 
N 

1 + Fexp (q/2) [ (N,) G N* -Uoo No + ~ o  e x p ( q / 2 ) +  1 

It is useful to define 

C e = FlAt 

exp (--q/2)l F 

(10) 

(so that we can later give different strain rate 
dependences to the orientational component of 
strain )t o and the extensional component Xe). The 
extensional variables are now: 

K = No/N* (11) 

C~ = fexp (z~/kT) (12) 

and as before, Xe is given by the reciprocal of 
Equation 1 O: 

~k e " ~  N/No 

which approaches the fast model as Ce tends 
towards infinity, 

2.1. Severity of the rate effect 
The "time factor" will affect a rate process more 
strongly if the imposed strain rate is increased, 
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Figure 2 Nominal stress-strain curves for aspect ratio 3, 
K =  3, showing strain rate dependence when a rate con- 
stant is applied to the extensional deformation mode. 
Arrows indicate loading and unloading curves. (A) fast 
model; (B) rate = 1 (computation: C e = 0.2, Zxh/Zxt = 
0.1); (C) rate ~ 2 (C e = 0.1, ZxX/Zxt = 0.1); (D) rate = 4 
(C e = 0.05, 2xX/Zxt = 0.1); (E) orientational mode only 
(for infinite strain rate). 

the temperature reduced, or the "activation 

barrier" raised. While the latter is to be seen as 

basically a material property, it may not be 

sufficient to regard it as constant over all experi- 

mental conditions. It is common to view In(strain 
rate) as having an inverse effect to absolute tem- 

perature (to a first approximation). In order to 
examine in a general way the effect of introducing 

time dependence into the model, we shall refer to 

the "severity" of the rate effect, which will encom- 

pass all three factors. Variation in severity can 

then most conveniently be modelled by changing 

the value of Ce. 

3. Effect of rate dependence on 
extensional mode 

To investigate the effect of the time factor we take 
the fast model with the parameters previously 

chosen, i.e. aspect ratio 3, K = 3, and apply a rate 
constant to the extensional mode as described by 
Equation 10. As we are affecting only one mode, 
it is immaterial at this stage whether we alter the 
parameter F in Equation 10 by changing the value 
of the rate constant (effectively Ce) or the strain 
rate AX/At .  

The effect on the nominal stress-strain curve 
of varying F is shown in Fig. 2. For the purposes 
of computation, AX/At  has been fixed at 0.1 and 
Ce giver~ the values 0.2, 0 .1,0.05;  this is of course 
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Figure 3 The effect of "freezing out" the extensional 
mode: G o = initial slope of Q against h curve (= initial 
modulus in units of q) for fast model; G ~ = initial slope 
when orientational mode only is operative. The behaviour 
is sensitive to aspect ratio, but not significantly to frac- 
tional constraint on extensional mode. 

equivalent to assuming a fixed Ce, characteristic of 
the material at a given temperature, and varying 
the imposed strain rate by successive factors of 2. 

Curve A shows the original fast model: this would 
correspond to Ce = 0 or to an infinitely slow 
strain rate. Two features are apparent. Firstly the 

inflexion in the curve becomes much more pro- 

nounced, and for a sufficiently severe rate effect, 

the nominal stress reaches a maximum and then falls 

to a minimum as the limiting strain is approached. 

Such a fall would correspond to a case of geo- 

metrical softening: we are, of course, imposing a 

continually increasing q, and the true stress a will 
therefore also be continually increasing (q = 
vo/kT) ,  provided that the volume v per unit 

remains constant. 
The second feature is the greatly increased 

initial modulus. We recall that the initial modulus 
is a property which affords one of the most 

drastic contrasts between the rubbery and glassy 
states, differing by as much as three orders of mag- 
nitude. As the strain rate becomes large, the exten- 
sional component of the model will become 
entirely "frozen out" within the time-scale of the 
hypothetical test which is being modelled (Curve 
E): the limiting modulus will then be that associ- 
ated with the orientational mode alone. This 
makes a difference of about a factor of 7, compared 
to the fast model, for an aspect ratio of 3 and 
K = 3: Fig. 3 shows the difference as a function of 



aspect ratio*. Freezing the extensional mode alone 

therefore would not appear to produce such a 

dramatic increase in initial modulus as would be 

expected on going fully into the glassy regime, 
particularly when we consider in more detail the 

factors which contribute to deformation in the 
initial steep part of  the glassy s t ress-s t ra incurve .  
It should also be noted that the conversion from 
q to stress (i.e. Dqo to Go) is dependent  on the 
temperature T and the volume v per unit:  the 
change in absolute temperature associated with the 
introduction of  a t ime factor will make only a 
relatively small difference to the initial modulus 
Go, a reduction in temperature leading to a 
reduction in Go for a given calculated Dqo. There 
is, however, a possibility of  a change in v: as the 
temperature is reduced and long-range motion 
becomes more difficult, it might be expected that 
the size of  enti ty involved in local deformation 
processes wou ld  change. A decrease in v would 
increase the resultant initial modulus Go for a 
given Dqo as calculated on the basis of  the model. 

At sufficiently high stresses the s tress-strain 
curve approaches that  of  the fast model so closely 
as to be indistinguishable from it. The sign of  Aq 
may then be reversed, and an "unload"  curve 
plot ted at the same nominal strain rate: such 
curves are also shown in Fig. 2 (reversing at 
q = 20). The area swept out between the load and 
unload curves increases, as we should expect,  
with strain rate: if the strain rate is unchanged, the 
unload curve reaches zero stress with the strain 
still finite. This could indicate that there would be 
little driving force for the recovery of  the equili- 

brium state of  the system, and that any tendency 
towards "locking" of  one deformation mode by 

another might easily lead to permanence of  
deformation. 

3.1. Orientat ion behaviour 
A extensional rate constant will also affect orienta- 
tion behaviour. The orientation-true stress plot 
will be unaffected, except via concomitant  changes 
in temperature or v, but  the or ien ta t ion-s t ra in  
plot will be altered as shown in Fig. 4. As for the 
s t ress-s train curve, the initial slope of  the plot is 
increased: we then observe a pronounced levelling- 
off  with increasing strain. This behaviour is exactly 
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Figure 4 Orientation-strain curves for aspect ratio 3, 
K = 3, showing strain rate dependence when a rate con- 
stant is applied to the extensional deformation mode. 
Key as for Fig. 2. 

what is observed experimentally as we move 
towards the glassy state. However, the plot displays 
a subsequent upturn to approach the fast model 
at high strains: this, if  it is at all representative of  
experimental behaviour, suggests a possible prob- 
lem in birefringence experiments.  Given that high 
strains may not be experimentally accessible, the 
earlier part of  a curve such as C in Fig. 4 might 
suggest an approach to an asymptotic limit corres- 
ponding to the intrinsic birefringence ((/~ 1). 
Such reasoning would then lead to the deduction 
of  too low a value for intrinsic birefringence 
introduce error in the conversion from stress- 
optical coefficient to the differential of  (P2 (cos r  
with respect to stress. 

4. Application of rate dependence to 
orientational mode alone 

It is conceptually a little less easy to apply a rate 
constant to the orientational deformation mode, 
since it is less clear exactly what elementary 
process we can think of  as being "activated",  
and what the associated deformation increment 
would be. The orientational angle ~ can take 
any value from 0 to rr/2, rather than a value 
corresponding only to one of  a set o f  discrete 
energy states. Nevertheless, for the purposes of  
modelling we can introduce a time factor by 
modifying the expression for the area A of  the 
sampling plane. At the start of  a particular corn- 

*We note that Curve A displays a decreasing, and Curve E an increasing, gradient with increasing strain. In view of the 
difficulty in measuring a true initial modulus experimentally (rather than the estimated gradient over the first few per 
cent of strain), we might anticipate that experiment would indicate an anomalously large difference in modulus on 
"freezing out" the extensional mode. 
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Figure 5 Area of "sampling plane" as a function of time 
s after the last stress increment Aq (schematic, with 
both modes subject to rate effects). Ap = area when 
stress was last incremented; Ae = equilibrium area for 
the new level of q. 
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putation step let the plane area be Ap and the 
stress increment correspond to Aq. The equations 
above will then predict a new "equilibrium" area, 
say Ae. Let a time factor be introduced such that 
at the end of  the computation step (time At). 

A = Ae + ( A p - - A e )  exp (-- CoAxt) (13) 

i.e. let the area, and hence the orientational com- 
ponent o f  strain Xo "decay" from Ap towards 
Ae with a orientational rate constant Co (Fig. 5). 
The latter is closely analogous to the extensional 
rate constant Ce. The value of  A so obtained 
becomes Ap for the next computation step. 
Clearly, if At is large (i.e. we impose a slow strain 
rate) the result of  Equation 13 will tend towards 
the corresponding fast model result. 

It is again necessary to check that the results of  
a calculation incorporating Equation 13 converge 
to a limit as the stress increment becomes small 
and the number of  steps large, for a fixed strain 
rate. This limit corresponds to modelling a con- 
tinuous mechanical test, performed at constant 
nominal strain rate. An increment Aq = 0.1 again 
offers a suitable compromise between accuracy 
and cost, though the computation is inevitably 
more time-consuming since the more rigorous 
procedure for constant strain rate modelling is 
employed. 

4.1. Effect of orientational rate 
dependence on deformation 

If only the orientational deformation mode is sub- 
jected to a "time factor" the stress-strain curve is 
affected as shown in Fig. 6. The values of  Co used 
are the same as the Ce values in Fig. 2, again with 
AX/At  = 0.1 (it should again be emphasized that 
altering Co is a computational convenience: the 
units of  time are arbitrary and the absolute values 
of  the rate constants unknown, so that reducing 

Figure 6 Nominal stress-strain curves for model with 
orientational mode only subject to a rate effect. Aspect 
ratio 3, K = 3. (A) fast model; (B) rate = 1 (computation: 
Co = 0.2, Ak/ht = 0.1); (C) rate ~ 2 (Co = 0.1, AX/ZXt = 
0.1); (D) rate = 4 (Co = 0.05, ,xX/s = 0.1); (E) rate 
infinite (or orientational mode "frozen out". 

Co is equivalent in effect to increasing the imposed 
strain rate). The orientational rate constant alone 
has little effect on the initial slope, but increases 
that of  the inflexion region. Not surprisingly, the 
trend bears little relation to the stress-strain 
behaviour of  glasses: as has been anticipated above, 
we must proceed to apply rate constants to both 
deformation modes. 

Fig. 6 indicates a progressive reduction in 
maximum strain from the "fast model" limit to 
an extension ratio equivalent to K when the 
orientational mode is entirely "frozen out".  This 
behaviour follows from the constant nominal 
strain rate condition; the original uncorrected 
computation gives an unchanged maximum strain 
(for finite Co) but would in effect require a time 
tending to infinity for its attainment. 

5. Resultant behaviour: rate dependence 
on both modes 

We now apply rate effects to both deformation 
modes. With increasing strain rate or smaller (i.e, 
more severe) rate constant we observe firstly a 
more pronounced "yield" in the nominal stress- 

strain curve, and secondly a rapidly increasing 
initial modulus. These observations are true 
whether we keep the two rate constants the same 
(Fig. 7) or fix the extensional constant Ce and 
vary the orientational constant Co from infinity 
(equivalent to the fast model) down to Co = Ce 
(Fig. 8). The latter corresponds to the gradual 
introduction of  an orientational rate constant in 
addition to an extensional one. 
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Figure 7 Nominal stress-strain curves: both modes 
subject to rate effects, with C O = Ce. Aspect ratio 3, 
K = 3. (A) fast model; (B) rate = 1 (computation: C O = 
Ce = 0.25, ZxX/Zxt = 0.1); (C) rate = 2 (Co = Ce = 0.125, 
ZxX/Zxt = 0.1). 

Of the two sets o f  curves shown in Figs. 7, 8, 
the latter will be the more appropriate to the 
situation envisaged in a glass, with the shorter 
range orientational mode less strongly affected by 
the time factor than the longer range extensional 
mode. A series of  different strain rates may be 
modelled by taking Ce and Co in a fixed ratio and 
changing zSZ/At (or equivalently fixing AL/At and 
changing Ce and Co proport ionately) .  

We now have to specify the fixed ratio. It will 
be shown below that a consideration of  recovery 
behaviour affords one method of  arriving at the 

appropriate ratio experimentally.  For the present, 
however, we recall that the extensional defor- 
mation mode (the longer-range of  the two) is 
expected to show the more severe rate dependence, 
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Figure 8 Nominal stress-strain curves, showing effect of 
gradually bringing in an orientational rate effect. Aspect 
ratio 3, K = 3 ,  Ce=0.125. (A) no orientational rate 
effect (Co infinite); (B) Co=0.5;  (C) Co=0.25; 
(D) C O = 0.125. 
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Figure 9 Nominal stress-strain curves for finite rate 
model: strain rate shown in arbitrary units. 

and we therefore make an arbitrary choice of  one 

order of  magnitude as the ratio of  the rate con- 

stants. Accordingly, we set Co/Ce = 10: Fig. 9 
shows a series of  nominal s tress-strain curves with 
rate constants in this ratio. 

5.1.  Resu l tan t  o r i e n t a t i o n  behav iou r  
In Appendix I of  Part 2 it is shown that the sampl- 
ing plane area is proport ional  to the ratio of  two 
integrals, I2/I3, where 

I n = j" secq+n~ d~ 

[limits 0, arc cos (1 --  e2) 1/2 ] 

where ~ is related to ~ and the unit eccentricity 

e by the relation 

cos 2 ff = (1 --  e2)/(1 --  e2sin2~b) 

and the aspect ratio is equal to ( 1 - - e 2 )  -1/2. 

Equation 13 is then equivalent to saying that the 
ratio I2/I3 decays from an instantaneous value at 
the start of  a computat ion step towards the 
equilibrium value appropriate to the new stress 
level, or strictly to the new value o f  q. 

In an analogous way we can take the expressions 
for (cos2n~) given in Appendix I o f  Part 2 - 

proport ional  to the ratios of  similar integrals - a n d  
allow them to "decay" in a similar manner. The 
(P2n) can then be derived. In fact we can simply 
"decay" the (Pzn) directly, since in each step we 
are essentially calculating changes in (cos TM) rather 
than absolute values. Thus: 

(P2n)p = (P2n)e + ((P2n)p --  (P2n)e) 

x exp ( -  Co2Xt) (14) 

(subscripts have the same meaning as in Equation 
13). Fig. 10 shows the predicted o r i en t a t i on -  
strain behaviour with Co/Ce = 10: the structural 
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Figure 10 (P2n(COS ~b)) against ratio for finite rate model: 
aspect ratio 1.46, K = 4.5, Co/Ce = 10. Number denotes 
strain rate (arbitrary units). 

parameters are assigned the values suggested in 
Part 2 for PMMA. The plots correspond to the 
stress-strain curves of  Fig. 9. The initial slope, i.e. 
the SNOCP, rises from the "fast model" value of  
0.065 up to about 0.4, but then falls off  again (for 
very severe rate effects, omitted from the diagram 
for clarity, it would fall below the "fast model" 
value). 

The corresponding plots of  orientation against 
q, i.e. true stress, are drawn in Fig. 11. Since no 
significant orientational strain develops until the 
threshold value of  q has been attained, the plot 
does not "take off" until this finite q has been 
reached. The initial slope on doing so increases 
with the severity of  the orientational rate effect. 
Additionally, the curve approaches a limiting (P2) 
which is less than 1 as time increases; ,this is 
analogous to the progressive reduction in apparent 
maximum strain in Fig. 6, and is again a conse- 
quence of  the "constant nominal strain rate" con- 
dition. We might again anticipate problems with 
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Figure 11 (P2) as a function of true stress parameter q. 
Strain rate shown in arbitrary units. 

birefringence techniques: since the apparent 
asymptote of  the plot of  (P2) against q no longer 
corresponds to complete orientation, it may lead 
to the deduction of  too low a result for intrinsic 
birefringence. 

The magnitude of  (/~ again remains low, as in 
the fast model. However, the high-strain upturn is 
lost: we note that even with a very gentle rate 
effect, which would have a barely noticeable effect 
on the stress-strain curve, the effect on (/~ at 
high strain is nevertheless considerable. As the rate 
effect becomes more severe, the uncertainty in 
the computed (/~ increases*, while at low strains 
(P2) is changing rapidly. It thus becomes more 
difficult (and expensive in computer time) to 
determine a (P4)  against (P2)  curve to a specified 
accuracy, and such a curve is therefore a less con- 
venient means of  characterizing the orientation 
behaviour than in the rubbery state. 

We may conclude that the finite-rate model, 
like its "fast" counterpart, predicts (P4(cosq~)) 
values which remain very low, and that in the 
finite-rate case this is true even as we approach the 
limiting strain. This accords with the results of  
most experimental techniques, with the possible 
exception of  Raman spectroscopy: it constitutes 
a major difference between the predictions of  the 
two-mode model and of  the pseudo-affine defor- 
mation scheme. 

5.2. Low strain behaviour and the 
threshold stress 

Where both deformation modes are subjected to 
sufficiently severe rate effects (i.e. high strain rates 

*The computation involves adding and dividing the results of several numerical integrations. These results are themselves 
small, which leads to a proportionately increasing error in (P4). The great expenditure of computer time which would 
be required in order to improve the accuracy would be unjustified in view of the considerable uncertainty associated 
with experimental values of (P4). 
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or small Ce, Co) the initial port ion of  the s t ress -  

strain curve becomes steep, and the procedure for 

establishing a specified nominal strain rate fails to 
converge, the calculated strain rate being virtually 
independent of  At* and smaller than the rate 
specified. The computat ion procedure is designed 
to continue the calculation nonetheless until 
the specified strain rate can be attained. This is 
achieved, for given values of  the variable param- 
eters, at some threshold level of  q (the threshold is 
independent of  the increment Aq used in the cal- 
culation). Large increases in strain are then obtained 
for very little further increase in q, i.e. in true 
stress. 

Such a large increase in strain for little increase 
in q is as near as we can come, in a "monotoni-  

cally increasing true stress" model, to a true yield 
drop:  it may be compared to a "soft"  mechanical 
test, although for the uniaxial geometry the latter 
will usually involve a monotonical ly increasing 
nominal stress, with the exact shape of  the curve 
depending on the elasticity and response time of 
the testing apparatus. 

5.3. "Yielding" and the volume per unit 
It is important  to note that we have not introduced 

any qualitatively new process into the model - 
merely introduced a time limitation associated 
with each deformation mode. It is perhaps surpris- 
ing, therefore, that the resulting stress-strain 

curve displays low-strain behaviour so reminiscent 
of  the yielding observed experimentally. 

However, if we are tentatively to associate this 
effect with the yielding of  polymer glasses, it will 
be necessary to allow for a change in the scaling 
on the stress axis - that is, in the conversion 
between the dimensionless parameter q and stress, 
and hence in the volume per unit v. For polymers 
in the rubbery state, the considerations discussed 
in Part 2 indicate that reasonable values of  v will 
be o f  order 1 nm 3 t ,  so that at room temperature 

the scale fac tor  q/o (=  v/kT) will be of  order 
10 .4 to 10-3; i.e. the dimensionless parameter q 

will be numerically rather smaller than the stress in 
MPa. 

Glassy polymers, in contrast, yield - if at all - 
at stresses of  order 10 2 MPa. Hence, to equate the 
value of  q associated with the "yield effect" to the 

yield stress o f  a typical  glassy polymer implies a 

reduction in v of  roughly an order of  magnitude 

compared to the rubbery state. This would bring 

v down to a size comparable to that  of  a repeat 

unit (judging by the threshold values of  q obtained 

above). 
The reduction in v is not altogether implausible 

- we would intuitively expect deformation pro- 
cesses to be more localized in the glass in view of  
the absence of  long rate mobil i ty -- but the 
magnitude of  the reduction does seem rather 
drastic. Speculatively, the model is not making 
"yield"  quite difficult enough. 

6. Recoverability of the deformation 
On performing a simple mechanical test at a 
constant strain rate, a typical polymer glass will go 
through a load -un load  cycle which will bring it 
back to zero stress at some finite strain. If the 
specimen is subsequently allowed to recover, some 
further dimensional change will occur, but only at 
temperatures near Tg will a substantial proport ion 
o f  the imposed strain recover in a measurable time. 
We return below to the question of  differences in 
recovery rates of  orientation and overall strain. 

The constant nominal strain rate model  can be 

used only to a limited extent to model "unload- 
ing". Fig. 2 illustrates the trend as a progressively 
more severe rate effect is applied to the extensional 

mode. When several rate effects are applied to 
both deformation modes, the computat ion ceases 

to be well behaved: the program calculates so great 
a slope in the s tress-strain plot immediately after 
"loading" is stopped that it is unable to follow 
the s tress-strain curve within the available com- 
putat ion accuracy. Extrapolation of  the trend so 
far a s w e  can follow it indicates that the "unload" 
curve, at the same strain rate (in magnitude) as 
for loading, will reach zero stress at a strain which 
increases steadily with the severity of  the rate 
effect, and thus with decreasing temperature or 
increasing strain rate. 

However, the model as so far developed would 
indicate that this residual strain will continue to 
recover: slowly compared to the time taken for 
the l oad -un load  test itself, but  nevertheless on a 
measurable time-scale. If  we consider for simplicity 
only extensional strain, it is easily shown from 
Equation 10 (putting q = 0) that the extensional 
strain Xe "decays" as exp (-- Cet). 

*This corresponds to the situation where the strain-time plot is linear, so that Ah is proportional to At. AMAt thus 
takes a constant value dependent on the size of increment Aq which has just been imposed. 
tAt 20 ~ C the scale factor for v=  1.0nm 3 is 2.47 • 10 -7 , and at 150 ~ it is 1.71 • 10 -7 . 
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Thus the model as it stands will not predict the 
effectively permanent, plastic deformation of  
polymer glasses. This can be understood in terms 
of  the procedure we have used to introduce rate 
dependence into the two-mode model. Our two 
simple exponential terms, with rate constants Co 
and Ce, will clearly be inadequate for a full des- 
cription of  the behaviour of  real glasses: such a 
description requires a more complex analysis of  
the relationship between stress, time and tempera- 
ture, involving additional parameters such as are 
incorporated in the Williams-Landel-Ferry (WLF) 
equation (see, e.g. Ferry [4]). The WLF approach, 
originally empirical but usually analysed theoreti- 
cally in terms of  free volume changes, leads to 
temperature-dependent activation energies and 
predicts that molecular motion will become 
"frozen" at temperatures about 50~ below Tg, 
which might be seen as an "effective absolute 
zero". In comparison to this more detailed 
approach, the two-mode model will thus predict 
too rapid a rate of  recovery in the glass. The impor- 
tant positive feature of  the two-component 
approach is that the resolution of  deformation 
into an orientational and a non-orientational com- 
ponent, subject to different rate effects (however 
we choose to formulate the rate dependence), 
leads in general to different relaxation rates for 
molecular orientation and overall strain. It is this 
facility which is required if the experimentally 
observed relative behaviour of  orientation and 
strain is to be successfully described. 

We have of  course neglected viscous flow 
effects in systems which lack a permanent cross- 
link network. However, any such genuinely 
irrecoverable component of  deformation is easily 
enough visualized in terms of  the "pulling-out" of  
some of  the chain tangles and chain ends; it will 
be most significant for shorter chains. 

7. Relaxation and annealing effects 
Stress relaxation experiments are perhaps most 
commonly associated with creep studies, but the 
work discussed in Part 1 suggests that the modelling 
of  relaxation behaviour may be of  use in consider- 
ing deformation mechanisms. It will be recalled 
that one of the original stimuli for the two- 
component a p p r o a c h  to deformation was the 
differing behaviour of  orientation and of  overall 
strain when comparing deformation above and 
below Tg, or when considering relaxation. 

7.1. Modelling stress relaxation 
To apply the model to stress relaxation, the step- 
wise computation is performed up to some specified 
value of  q. Stress relaxation is then modelled by 
setting At to a constant for subsequent steps and 

reducing q at each step such that the extension 
ratio X remains constant (to within a specified 
accuracy, typically 0.1%): the appropriate reduc- 
tion in q is found by an iterative method involv- 
ing a "binary division" procedure. The decrease 
of  q, and concomitantly of  orientation, is moni- 
tored as a function of  time, so that the situation is 
to be likened to a stress relaxation experiment at 
constant nominal strain. 

A note of  caution is again required: under con- 
ditions of  stress relaxation we should anticipate 
greater inadequacies in the two-mode approach as 
so far developed, due to coupling between the 
deformation modes, than under conditions of  
simple loading. As indicated in Part 1, this will be 
a consequence of  the differing time sensitivity of  
the deformation modes: essentially, the two 
modes will "try to relax" at rates which may be in 
a different ratio from the rates at which they, 
cooperatively, gave rise to the original deformation. 

With a rate effect applied only to the exten- 
sional mode the modelling is straightforward. Fig. 
12 shows the "decay" of  stress towards a finite 
asymptote during relaxation. This finite stress 
level will correspond to the "fast model" stress 
appropriate to the strain. The "loading" stress- 
strain plot for Curves A to C is Curve A of  Fig. 8: 
the fact that Curves A, B, C start from similar 
values of  the nominal stress parameter Q is for- 
tuitous but convenient. With a less severe rate 
effect (Curve D) the possible degree of  relaxation 
is reduced. 

1.0 

Q B 
D 

o lb 
time (arbitrary units) 

Figure 12 Modelling stress relaxation at constant strain. 
Aspect ratio 3, K = 3, rate effect on extensional mode 
only. 2xX/At = 0.1 during loading. (A) C e = 0.125, loaded 
to q = 1.0 and relaxed; (B) C e = 0.125, loaded to q = 1.5 
and relaxed; (C) C e = 0.125, loaded to q = 2.0 and re- 
laxed; (D) C e = 0.25, loaded to q = 1.0 and relaxed. 
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The next step - the quantitative application of  
the "stress relaxation" procedure to the more 
complex case where both deformation modes are 
subject to rate effects - is attended by com- 
putational difficulties: it will not be dealt with 
further in the present paper. 

7 .2 .  Model l ing  annea l ing  
The behaviour of  the model corresponding to 
annealing at low temperatures (e.g. below Tg) 
may be examined by loading as before to a specified 
value of  q and then removing the load instan- 
taneously - a situation analogous to a "load, 
quench, unload" experiment. The step time At 
is again set to a constant, and the decay of  strain 
and of  orientation monitored. We can specify 
different rate constants during loading and during 
"annealing": the two rate constants should remain 
in a constant ratio (presumably a material prop- 
erty), but their absolute values will depend on 
temperature. Initial deformation in the rubbery 
state (no rate effects) is modelled by setting Co 
and Ce to be very large during loading. 

It is convenient to plot this decay in a form 
similar to that used by Kahar et al. [5] in display- 
ing their results for PMMA annealed slightly above 
Tg (at 116.5 ~ C). We determine (P2)/(P~)o, where 
(P2) is measured as a function of  time and the 
suffix zero denotes the value at the start of  the 
"anneal", and plot this ratio against the corres- 
ponding fractional strain (we use the fractional 
true strain et/eto ). Both quantities decay from 1 
towards 0 with time (Fig. 13). The orientation 
parameter (P2) decays rather more rapidly than 

1.0 

0 
o Et/Et ~ 1.0 

Figure 13 Fractional orientation plotted against fractional 
strain during "annealing", The model is "loaded" to 
q = 2 and allowed to "recover" with Co/C e taking the 
values indicated (aspect ratio 3, K = 3). 

<Pz> 
<P2>o 

OI E;t/E t 0 

l~'gure 14 Fractional orientation plotted against fractional 
strain during "annealing" with Co/Ce= 10, K =  3. 
Number denotes aspect ratio. 

overall strain, even if equal rate constants are 
applied to the two deformation modes; as we 
increase the ratio Co/Ce (i.e. make the exten- 
sional rate effect relatively more severe) the 
curvature of  the plot, not surprisingly, increases, 
taking a shape comparable to the experimental 
behaviour recorded by Kahar et al. Kahar et al. 
worked at 116.5~ i.e. just above Tg, but in a 
regime where rate effects are of  sufficient impor- 
tance to make recovery slow enough to be 
followed quantitatively. 

There are several parameters which might 
affect the "decay curve". The curvature is increased 
for units of  smaller aspect ratio (Fig. 14), but 
dependence on K is extremely slight. Dependence 
on the extent of  the original deformation (i.e. 
the as-deformed strain) is also slight, and the 
same curve is generated whether the model is 
subjected to the rate effects during loading (i.e. 
as well as during recovery) or not. For a fixed 
aspect ratio, then, the shape of  the curve is essen- 
tially controlled by the ratio of  the two rate con- 
stants during "annealing". Their absolute values 
are immaterial: in terms of  real polymers, this 
indicates that the "decay curve" will be indepen- 
dent of  the original deformation temperature 
(assuming that temperature will not affect the 
ratio Co/Ce, but only their absolute values, that is, 
merely the speed at which the specimen "slides 
down the decay curve"). These features are again 
in accordance with the observations of  Kahar et al., 
who found that samples of  PMMA extruded at 
50, 90 and l l0~  all followed the same curve. 
Over a wide temperature range we might neverthe- 
less anticipate some difference, if the effects of  
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any "coupling" between the two deformation 
modes is temperature dependent. Any coupling 
might be more effective where the longer-range 
extensional component predominates, thus inter- 
fering with recovery. This could help to account 
for the lesser degree of recovery in PMMA deformed 
as a rubber and quenched, than in a sample 
deformed as a glass. 

More qualitatively, the model also accords with 
indications from the work of Brady and Yeh [6, 7] 
that orientation decays more rapidly than overall 
strain on annealing slightly below Tg. This work, 
covering polystyrene and polycarbonate as well 
as poly(methyl methacrylate), has been discussed 
in Part 1. 

8. More general effects of temperature 
The mechanical behaviour of a non-crystalline 
polymer is most dramatically affected by changes 
in temperature when the material passes through 
its glass transition. At temperatures below the 
transition, the deformation is characterized by 
pronounced sensitivity to strain rate and therefore 
to time. 

However, the deformation behaviour is tem- 
perature sensitive quite apart from changes associ- 
ated with the glass transition. The sensitivity is to 
some extent less strong above Tg but it is never- 
theless significant. In more conventional approaches 
to rubber-like deformation, the simple propor- 
tionality of the "rubber modulus" NkT to tem- 
perature is insufficient to describe the temperature 
variation of mechanical behaviour alone, and tem- 
perature effects are dealt with in terms of vari- 
ations in the size of the statistical equivalent 
random link and, in some systems, the effect of 
temperature on strain-induced crystallization. 

In considering the two-mode model developed 
in Part 2, three principal effects of  temperature 
may be anticipated. Firstly, and most manageably, 
we have the conversion between the dimensionless 
parameter q and true stress o (q = vo/kT) so that, 
other things being equal, the conversion factor 
o/q will be proportional to absolute temperature. 

Secondly, we have the question of any tem- 
perature dependence of the volume per mobile 
unit v. It is possible that some large change in v 
may be associated with the glass transition; but it 
is also possible that v will vary with temperature 
well away from Tg. We might compare this to the 
temperature dependence of the apparent size of 
the statistical random link in conventional rubber 

elasticity theory. It may be, for example, with 
increased thermal activation, that sections of  
chain undergo deformation independently rather 
than as "bundles". Associated with any such 
change in v would be a possible change in the 
effective unit aspect ratio. Changes in v will 
affect only t he  "scaling" on the stress axis, so 
that the conversion factor o/q will no longer be 
exactly proportional to absolute temperature. 
Concomitant changes in unit aspect ratio will, 
in contrast, affect the shape of the nominal 
stress-strain plot itself, independently of scaling. 
We may speculate that a continuous variation of 
aspect ratio would be less plausible than step 
changes near specific temperatures, i.e. as chain 
segments move from cooperative deformation 
("bundles") to independent motion. 

Thirdly, it may be anticipated that the "frac- 
tional constraint" 1/K may be temperature depen- 
dent. We might expect that the mean constraint 
would tend to decline as temperature, and hence 
thermal activation, increases, and we can liken 
this to the expectation from a more conventional 
viewpoint that with increased thermal activation 
and chain motion some of the mechanical inter- 
linking (steric effects and chain "tangles", though 
not topological entanglements) will become less 
effective. 

In the finite-rate modification of the model, 
we have the additional effect of temperature upon 
the rate sensitivity itself. Firstly, it will be recalled 
that the factor F in Equation 9, and hence Ce, 
contains a term exp (-- 2xE/k T), related to an 
"activation barrier"; and secondly, the pre- 
exponential term may itself be temperature depen- 
dent. Similar considerations can be applied to Co 
in the more empirical Equation 13. Further, the 
nature of possible "coupling effects" between the 
two deformation modes may be expected to show 
a temperature sensitivity. The breakdown of steric 
or other interactions (or however we physically 
picture coupling) will presumably be thermally 
activated to some extent, and a small change in 
the efficiency of these interactions might have dis- 
proportionately great repercussions regarding, for 
example, the degree to which recovery of strain 
and orientation after deformation is prevented. 

While these speculative comments indicate that 
the possible effects of temperature on the charac- 
teristic nominal stress-strain plot are rather 
complex, they also highlight the value of following 
trends in mechanical behaviour using measurements 
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of orientation as well as stress-strain measure- 
ments. This is particularly so since the (P2n)-strain 
plots will be unaffected by scaling effects in the 
conversion from dimensionless units of q to those 
of stress; these plots will hence reflect only changes 
in the two central parameters themselves, and the 
associated trends may then be more clearly seen. 

9. Experimental data viewed in the 
light of the model 

Comparison of the two-mode model with experi- 
mental data relating to polymer glasses must be 
approached a little more tentatively than for the 
rubbery regime: this follows both from the less 
fully developed nature of the finite-rate model, 
and from the overall picture presented by the 
literature - a less rationalized and apparently 
more complex one than is the case for "classical" 
rubbers. The finite-rate modification of the basic 
two-mode model necessarily involves an additional 
element of uncertainty compared to the fast 
model, in the question of the values to be assigned 
to the rate constants. If we are content to consider 
arbitrary units of strain rate, the rate effects 
reduce to effectively one important parameter, 
the ratio Co/Ce. 

9.1. Factors affecting the shape of the 
stress-strain cu rye 

The shape of the stress-strain curve for a polymer 
glass is highly sensitive to experimental geometry 
and conditions; in particular, whether the tech- 
nique is "hard" (as in a screw-driven testing 
machine) or "soft" (as in a dead-loading system, 
imposing a monotonically increasing load and 
hence preventing any yield drop being recorded). 
In practice, most mechanical tests fall somewhere 
between the "hard" and "soft" extremes. 

The model, as indicated above, implies a mono- 
tonically increasing true stress, which would be 
something difficult to produce experimentally in a 
uniaxial geometry. Nevertheless, the general trends 
exhibited by the model as the effective strain rate 
is increased are in accordance with experiment. 
They include the steeper initial region, the increas- 
ing "threshold stress" analogous (at least quali- 
tatively) to yield, and the subsequent fall in 
nominal stress followed by a further increase as 
the limiting strain is approached. 

We cannot deal quantitatively with the initial 
modulus, since experimental moduli will include 
an unknown contribution of an "energy-elastic" 

Q 

~k 6 

Figure 15 Effect of necking on the load drop. The two 
solid curves differ in strain rate by a factor of 4. Dashed 
curve: expected curve after allowing for necking 
(schematic). 

nature; it is also because of this that the "thres- 
hold" effect predicted by the model is sharper 
than anything which would be seen by experiment. 

In practice, the presence of a yield drop will be 
associated with the localization of deformation in 
a neck in a uniaxial test (or a shear band in, for 
example, a plane strain test). If  a constant strain 
rate is imposed on the specimen as a whole, the 
strain rate within the neck will be higher, by a 
proportion dependent on the "draw ratio" and the 
ratio of neck length to gauge length. To imitate 
such a localization of deformation in the model, 
one would have to increase the effective strain rate 
accordingly once the threshold stress is attained. 
Such a modification would have the effect of 
"filling up the load drop", as illustrated (very 
schematically) in Fig. 15. 

The effect of a "distribution of constraint", 
discussed above, will also be significant here. It 
will tend to "smear out" the approach to the limit- 
ing strain: indeed, the limiting strain will be less 
well defined. Fig. 16 is an attempt to depict this, 
again very schematically. Allowance for these two 

~  
/ 

0 
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Figure 16 Effect of a distribution of constraint. Solid 
curve: as computed. Dashed curve: expected curve after 
allowing for distribution (schematic). 
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factors would tend to bring the predicted stress- 
strain curves nearer to those typically observed 
experimentally. 

9.2. The absolute magnitude of the rate 
constants 

It is instructive to estimate the magnitude of the 
"activation barrier" associated with the behaviour 
modelled above. We consider for simplicity only 
the stronger, extensional rate effect, controlled by 
the parameter Ce. The strain rate, in the arbitrary 
units of Figs. 9, 10 and 11, is given by 

rate = 40(AX/At)/Ce (15) 

If t is in seconds and a nominal strain rate of 
10 -3 sec -1 is chosen, the finite-rate curves of Fig. 9 
require Ce in the range 1.0 x 10 -4 to 1.6 X 10 -3. 

We recall that Ce is defined as f e x p  (AE/kT), 
with AxE the height of the activation barrier. If the 
frequency factor f is set to the Debye frequency 
fa (~  1013 sec-1) we write 

AE/kT = In (fa/Ce) (16) 

and the above values of C e then give AXE in the 
range 36.4 to 39.1 kT. The logarithm means that 
large changes in f /C e will give only small changes 
in AE. Escaig and Lefebvre [8], in their treatment 
of activated plasticity, suggest that the Debye 
frequency is an upper bound to the effective vibra- 
tion frequency, since it corresponds to uncor- 
related segment motion, and that a better estimate 
is obtained by dividing fa by the number of 
segments involved in the activation process: they 
take the value O.lf  a. This would alter the range 
determined above to between 34.1 and 36.8kT. 

This estimate of AXE is rough, but it is of a 
reasonable order of magnitude. It may be com- 
pared to the activation barrier for yielding of order 
50kT (for a strain rate of 10-3sec -1) used by 
Bowden and Raha [9], or to the activation barrier 
of "about 2 0 k T "  quoted by Escaig and Lefebvre 
[81. 

9.3. Rate effects and the orientation 
behaviour of PMMA 

The development of orientation with strain and 
with stress has been discussed above. Where data 
are obtained by a quench-unload method, we 
know [10] that points well below Tg lie roughly 
on a common <P2) against strain line. The (P2)- 
strain plot for the model is independent of the 
conversion factor from q to stress (i.e. of v), and 

so its primary temperature dependence will come 
from two factors: firstly any increase in constraint 
with decreasing temperature; and secondly the 
reduction in C O and Ce with decreasing tempera- 
ture (i.e. the rate effects become more severe). 
These factors would oppose one another. The tem- 
perature dependence of the (P2)-strain plot for 
the fast model was tentatively attributed above to 
the former: however, it is much less easy to visual- 
ize changes in such a molecular parameter in the 
glassy state, where the absence of long range 
mobility will prevent the constraint being reduced, 
as suggested earlier for rubbers, by mechanisms 
such as the "pulling-out" of chain tangles. 

The effect of increasing the severity of the rate 
effects depends on the ratio Co/C e. Applying a 
rate dependence to each mode, with a difference 
in the rate constants of one order of magnitude, 
leads to the trends already illustrated in Fig. 10, 
with the parameter values suggested in Part 1 for 
PMMA. The behaviour shown suggests a tentative 
rationalization of reported data. Firstly, it predicts 
the rise in SNOCP as the system is cooled below 
Tg - a rise which is appreciable, though not com- 
parable to the change in modulus. Secondly, it 
indicates how orientation-strain curves at various 
temperatures below Tg may approximately super- 
impose, at least at low degrees of orientation, as 
found by Pick et al. [10]. Thirdly, it may cast light 
on why the superimposition observation was not 
made by other workers (e.g. [10, l l  D. In addition 
to some important differences in experimental 
technique, we now have the possibility that with 
somewhat fortuitous choices of material, tempera- 
ture and strain rate, the orientation-strain data of 
Pick below Tg fell nearer to the "maximum-slope" 
curve of Fig. 10 than those of other workers. 

The ratio Co/C e = 10 predicts a maximum 
SNOCP higher by about a factor of 6 than the fast 
model value. Pick's data are roughly in accordance 
with this, though the scatter precludes a precise 
comparison. To confirm the predicted trends 
would require the determination of orientation- 
strain curves at lower temperatures and/or higher 
strain rates than those of Pick etal. This would 
be experimentally difficult because of the ten- 
dency to brittle fracture under such conditions, 
and in birefringence experiments the high modulus 
may cause stress birefringence to swamp birefrin- 
gence due to orientation. 

Because of the higher stresses involved, the 
development of birefringence in the glass will b e  
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Figure 17 <P, (cos q~)> plotted against <P2(cos~)> for the 
finite-rate model. Aspect ratio 1.46, K= 4.5, Co/Ce= 
10. Number denotes strain rate (arbitrary units). 

complicated by stress birefringence effects to a 
greater degree than in the rubber. This will be 
particularly significant for measurements made ,  
under load, though even after unloading some of 
the stress contribution may not be able to recover 
rapidly before the birefringence is measured. 

9.4. <P4(cos ~)> 
Values of <P4> for temperatures below Tg, like 
those for the rubbery regime, remain low at all 
accessible strains (except for some determined by 
methods such as laser-Raman spectroscopy, where 
results must be treated with some caution owing 
to difficulties in the analysis of the scattering data, 
due to uncertainty about line assignment and the 
nature of the Raman tensor). The available WAXS 
data [10 12] would suggest only a gradual change 
on passing through Tg, with the tendency towards 
negative <Pa> becoming a little clearer at lower 
temperatures. The analysis of orientational defor- 
mation below Tg in terms of the pseudo-affine 
scheme predicts that <P4) will, except at very low 
strains, increase rapidly with strain so as to be 
comparable in magnitude with <P2> at strains 

above perhaps X = 2. This is in sharp contrast to 
the affine prediction above Tg, and conflicts with 
the experimental indications referred to above. 

The two-mode model, by contrast, predicts low 
<P4> even when severe rate effects are applied. The 
application of a rate effect to each deformation 
mode has the effect of straightening out the <P4> 
against (P2> plot (Fig. 17). The uncertainty in the 
computed <P4> increases rapidly as the orient- 
ational rate effect becomes more severe, and at 
rates greater than those indicated in Fig. 17 too 
few points are computed in the appropriate range 
of <P~) (because of the high d<P2)/dq) to allow a 
useful Pl0t to be made. Nevertheless, one may 
draw the qualitative conclusion that the finite-rate 
model does not predict the sharp upward curvature 
typical of the pseudo-affine deformation scheme: 
the fast model case will represent the most pro- 
nounced curvature on the <P4) against <P2> plot 
obtainable from the two-mode model. 

Data for T <  Tg (as in Mitchell etaL [12]) are 
shown in Fig. 18. Neither the pseudo-affine nor 
the two-mode model affords a good fit, with the 
exception of the data for 100 ~ C (just below Tg) 
which are fairly well described by the two-mode 
model in the absence of rate effects. One might 
tentatively conclude that typical two-mode predic- 
tions lie close to the data than do the affine and 
pseudo-affine curves, though to predict the magni- 
tude of the negative <P4> would require aspect 
ratios larger than the 1.46 suggested for rubbery 
PMMA. However, firm conclusions would have to 
await more precise <P4> data than have so far been 
obtained. 

9.5. Annealing and relaxat ion effects  
The basic philosophy behind the two-mode model 
gives preferential recovery of the orientational 
component of strain, and hence leads quite natur- 
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Figure 18 (P4 (cos 4)> plotted against < P2 (cos qs)) for PMMA deformed in plain strain (data from Mitchell et al. [12]). 
Solid curve: two-mode model, aspect ratio 1.46 (fast model). Dashed line: pseudo-affine. 
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Figure 19 Orientation and strain recovery: aspect ratio 
1.46, K=  4.5, originally loaded to q = 2 (giving (P2)= 
(P~)o, strain eno or e~o). Number denotes ratio Co/C e. 
(a) nominal strain en; (b) true strain et. 

ally to the form of recovery behaviour observed 
quantitatively by Kahar etal. [5] and somewhat 
more qualitatively by Brady and Yeh [6, 7]. The 
curvature of the predicted "decay curve" increases 
with the ratio Co/Ce, and by comparing it with the 
experimental curve recorded by Kahar etal. one 
can derive a rough estimate of  a reasonable value 
of  this ratio for PMMA. 

The comparison (Fig. 19) indicates that a ratio 
of  order 7:1 would be appropriate for prediction 
of  the general trends in the orientation-strain 
behaviour of PMMA* (Fig. 20) - not far from the 
arbitrary choice of one order of magnitude made 
above. The curves cannot be expected to match 
precisely: we have already discussed the import- 
ance of  coupling between the deformation modes, 
and different techniques of orientation determina- 
tion may give different ra tes  of  orientation 
recovery [6, 7]. Nevertheless, with this rough esti- 
mate of  Co/C e we move a little nearer to quanti- 

~2>o 

0- 
0 

A 

E~/E nO 
Figure 20 Orientation and strain recovery: as Fig. 19, 
with Co/Ce= 7. Data: Kahar etal. [5]. Deformation 
temperature: �9 50 ~ C, �9 90 ~ C, [] 100 ~ C. 

tative modelling of  PMMA in the glassy state; or 
more strictly, at temperatures which are not so far 
above Tg that rate effects may be neglected. 

The further observations of Kahar etal. in 
regard to the finite limiting shrinkage stress can 
also be related to the two-mode model. The model 
would predict that at long times the shrinkage 
stress will tend to a limit which is a function only 
of strain, independent of  the temperature and rate 
effects applicable to the original deformation. This 
accords with the observation that specimens 
deformed at different temperatures but to the 
same strain exhibited the same limiting shrinkage 
stress, while those deformed to the same birefrin- 
gence but at different temperatures, giving dif- 
ferent strains, did not. The limit will simply be the 
"fast model" stress appropriate to the strain in 
question, as discussed above. The initial peak 
shrinkage stress, which varied with as-deformed 
birefringence, may be a reflection of internal 
stresses which have been unable to recover. A 
greater stress is required to deform a specimen at 
lower  temperature (for a fixed strain and strain 
rate) and we may expect a higher peak stress, 
other things being equal, when the specimen is 
heated to allow shrinkage to occur. The higher 
as-deformed birefringence could be interpreted 
in the light of the model too: from Fig. 10 we see 
that over at least part of  the range shown, a lower 
temperature (i.e. more severe rate effects) will lead 
to greater orientation at intermediate strains. The 
extrusion technique allowed strains up to X = 2 
(100%) to be attained. Part of  the birefringence 

*In making this rough estimate the slight dependence of the curve on the extent of the original deformation is neglected. 
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after extrusion recorded by Kahar etal. may, 
however, be attributable to the stress contribution 
(rather than to the "orientation" contribution); 
this would be enhanced at lower temperatures 
because of the higher stress associated with a given 
strain. 

10. Summary 
Rate dependence is introduced into the two-mode 
model in a deliberately simplified form, in order 
to see what features of deformation can at least 
qualitatively be described with a minimal number 
of additional adjustable parameters. In practice 
they will represent - rather like the constraint 
concept introduced in Part 1 - overall parameters 
which may be seen as describing the properties of 
the material, or of the assemblage of orienting 
units, averaged over regions large compared to 
chain spacings. Such an approach bears some com- 
parison with one of the underlying ideas of "tube 
models": that a polymer chain is so long and inter- 
acts with so many other molecules, that its environ- 
ment may be treated as a continuum, with proper- 
ties characteristic of the material in bulk. While 
the rate constants might possibly be seen in 
relation to some single dominant activated process 
affecting a particular deformation mode, the 
applicability of the model does not directly 
require that this should be the case. 

The introduction of rate dependences into the 
two-mode model has succeeded in describing at 
least qualitatively some of the trends to be ex- 
pected when going from the rubbery to the glassy 
regime. These features include the drastic increase 
in the initial slope of the stress-strain curve, and 
the subsequent drop in nominal stress, which 
becomes more pronounced with increasing severity 
of the rate effect (i.e. as the values of the rate 
constants are decreased, or as the imposed strain 
rate is increased). With a suitable choice of Co/Ce, 
the ratio of the rate constants associated with the 
two modes, the increased initial slope of the (P2} 
against strain plot may also be modelled: for 
PMMA, a ratio 7 : 1 seems to be appropriate. 

Where a severe rate effect is imposed, with rate 
constants applied to both deformation modes and 
the effective strain rate held constant, the model 
predicts behaviour which is very reminiscent of 
yield - even though no specific yield process has 
been introduced. There remains, however, some 
doubt over the magnitude of the "threshold" level 
of the true stress parameter q in relation to the 

experimental yield stress, as a function of strain 
rate. The constant nominal strain rate condition 
also reduces the effective maximum strain of the 
system as the severity of the rate effect is increased. 

The predicted levelling-off of the (P2)-strain 
plot, where the extensional rate effect is relatively 
severe, suggests that experimental birefringence- 
strain plots may give a misleading indication as to 
the birefringence corresponding to (P2) = 1 : a plot 
which does not extend close to the limiting strain 
will appear to be approaching an asymptote which 
does not coincide with (P2)= 1. As in the "fast 
model", (P4) remains low: in the constant strain 
rate model this is true even up to the effective 
limiting strain. 

The principle of resolving deformation into 
orientational and non-orientational components 
allows the description of stress relaxation and 
annealing behaviour, including the experimental 
observation that orientation is more susceptible to 
recovery than is overall strain. Full quantitative 
modelling of stress relaxation would require much 
further work, but would be worthwhile though 
costly in computer time. 

The model has not taken into account the 
"energy-elastic" contribution, analogous to that 
involved in crystal deformation - a contribution 
which will be more significant in the glassy than in 
the rubbery regime, on account of the higher 
stresses involved, and which will be associated with 
the non-isovolumetric nature of glassy deforma- 
tion. While the omission of this contribution is not 
expected to affect the overall shape of the stress- 
strain curve very much, it will have an important 
effect on the initial modulus. 

As one would have anticipated, the effect of 
coupling between the deformation modes appears 
to be more significant in the glassy than in the 
rubbery state. Though the two-component 
approach makes the assumption that the modes 
may be taken as independent to a first approxi- 
mation, the secondary effect of interactions 
between them - particularly under relaxation or 
annealing conditions - should always be borne in 
mind. 

Thus, the profound differences both in the 
stress-strain and in the orientation-strain relation- 
ships characteristic of the rubbery and glassy states 
can be accounted for by the two-mode deforma- 
tion model. A semi-quantitative prediction of the 
mechanical and orientational behaviour of the 
glass can be obtained by the simple application of 
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a rate constant to each of  the two deformation 

components of  the model. At  the same time, one 
is able to explain annealing effects in deformed 
glasses where orientation is seen to recover more 
readily than strain. 
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